Improving the Quality of Pavement Profile Measurements Evaluation of Potential Pavement Reference Devices and Inertial Profiler Type Testing

November 3, 2015 Steven M. Karamihas

Reference Device Evaluation

Describe

- Goals
- Approach

Thank participants Provide a sample report

RPUG 2015

Reference Device Evaluation

Goals

- Obtain a cost effective, portable way to measure a reference profile.
- Provide incentive for innovation.
- Measure profile for current and expected applications related to vehicle response.

Reference Device Evaluation

Approach

- Comparison to a benchmark measurement
- Evaluation of profile:
 - profile trace accuracy
 - profile trace repeatability
 - longitudinal distance measurement accuracy
- Evaluation on diverse surface textures
- 6 passes on each test section

Cross Correlation: "Good" Agreement

AC Surfaces

RPUG 2015

PCC Surfaces

Markings

Profiling Cart

Reference Laser

Rod and Level

SSI CS 8800 with Laser

SSI CS 8800 with Laser

SSI CS 8800 with Wheel

SSI CS 8800 with Wheel

ARRB Walking Profiler G3

SurPro 4000

SurPro 4000

Shima MRP-3000

Shima MRP-3000

ICC Roadbot

10/03/2015 16:25

Benchmark Test Evaluation Report

Test Section:	Long Dense-Graded Asphalt
Date:	2015-Oct 03
Device:	United Federation of Planets Standard Issue Triquarter
Operator(s):	Opie Rater
Recording Interva	<u>al:</u> 11.6 mm
Use Moving Aver	rage: No
<u>Up-Sampling:</u>	For comparison to the benchmark profile measurement,

Results for Profile:

	Repeatabi	ility Score	Accura	cy Score
Waveband	Required Achieved		Required	Achieved
IRI	0.98	0.992	0.98	0.975
Long	0.98	0.993	0.98	0.981
Medium	0.98	0.992	0.98	0.960
Short	0.94	0.689	0.94	0.127

data were up-sampled to an interval of 5.08 mm.

Result for Longitudinal Distance: Passed

The average error in longitudinal distance was -0.01 percent.

Run Log, DMI Results:

Run	Start Time	End Time	IRI	Percent	Length	Percent
			(mm/km)	Error	(m)	Error
1	11:16	11:32	1.835	-1.49	386.06	-0.02
2	11:41	11:57	1.835	-1.53	386.09	-0.01
3	12:06	12:22	1.836	-1.47	386.09	-0.01
4	12:30	12:46	1.837	-1.38	386.09	-0.01
5	12:56	13:12	1.831	-1.70	386.12	-0.01
6	13:16	13:32	1.824	-2.10	386.12	-0.01

The section length is 386.15 m, measured with a steel tape and temperature corrected. The reference IRI value is 1.863m/km.

Accuracy Scores:

With optimal DMI correction:

	Cross Correlation to Benchmark Profile by Waveband									
Run	IRI	Long	Medium	Short,	Short,	Short,	Short,			
				Seg. 1	Seg. 2	Seg. 3	Seg. 4			
1	0.979	0.980	0.964	0.112	0.153	0.088	0.157			
2	0.978	0.983	0.963	0.103	0.144	0.080	0.149			
3	0.977	0.980	0.961	0.117	0.158	0.092	0.153			
4	0.977	0.980	0.962	0.112	0.164	0.087	0.155			
5	0.970	0.976	0.955	0.123	0.157	0.088	0.160			
6	0.969	0.988	0.953	0.093	0.156	0.089	0.160			
Ave.	0.975	0.981	0.960	0.110	0.155	0.087	0.156			

With no DMI correction:

	Cross Correlation to Benchmark Profile by Waveband									
Run	IRI	Long	Medium	Short,	Short,	Short,	Short,			
				Seg. 1	Seg. 2	Seg. 3	Seg. 4			
1	0.976	0.980	0.958	0.126	0.175	0.089	0.154			
2	0.972	0.983	0.960	0.107	0.166	0.085	0.131			
3	0.972	0.980	0.958	0.125	0.176	0.095	0.137			
4	0.972	0.979	0.959	0.133	0.191	0.086	0.140			
5	0.970	0.975	0.956	0.130	0.154	0.075	0.155			
6	0.968	0.987	0.953	0.094	0.141	0.097	0.158			
Ave.	0.972	0.981	0.957	0.119	0.167	0.088	0.146			

Repeatability:

With optimal DMI correction:

	-	Cross Correlation by Waveband							
Run 1	Run 2	IRI	Long	Med.	Short,	Short,	Short,	Short,	
					Seg. 1	Seg. 2	Seg. 3	Seg. 4	
1	2	0.996	0.995	0.996	0.659	0.762	0.707	0.833	
1	3	0.995	0.998	0.994	0.785	0.861	0.743	0.802	
1	4	0.995	0.998	0.995	0.830	0.814	0.704	0.798	
1	5	0.988	0.993	0.988	0.797	0.815	0.688	0.771	
1	6	0.987	0.991	0.986	0.423	0.603	0.508	0.729	
2	3	0.997	0.996	0.995	0.699	0.810	0.679	0.792	
2	4	0.996	0.995	0.996	0.592	0.691	0.627	0.787	
2	5	0.990	0.991	0.990	0.646	0.732	0.630	0.762	
2	6	0.988	0.993	0.987	0.619	0.715	0.494	0.664	
3	4	0.997	0.998	0.996	0.743	0.778	0.730	0.770	
3	5	0.991	0.994	0.992	0.761	0.840	0.681	0.779	
3	6	0.989	0.991	0.989	0.479	0.664	0.497	0.697	
4	5	0.991	0.993	0.991	0.774	0.790	0.730	0.772	
4	6	0.989	0.990	0.988	0.367	0.544	0.427	0.666	
5	6	0.993	0.986	0.992	0.456	0.641	0.507	0.661	
Ave	rage	0.992	0.993	0.992	0.642	0.737	0.623	0.752	

With no DMI correction:

			Cross Correlation by Waveband						
Run 1	Run 2	IRI	Long	Med.	Short,	Short,	Short,	Short,	
			-		Seg. 1	Seg. 2	Seg. 3	Seg. 4	
1	2	0.996	0.995	0.996	0.652	0.754	0.694	0.817	
1	3	0.995	0.998	0.994	0.774	0.848	0.727	0.784	
1	4	0.994	0.998	0.994	0.810	0.792	0.678	0.776	
1	5	0.987	0.993	0.987	0.785	0.806	0.655	0.745	
1	6	0.986	0.991	0.984	0.416	0.591	0.491	0.714	
2	3	0.997	0.996	0.995	0.689	0.802	0.672	0.780	
2	4	0.996	0.995	0.996	0.582	0.678	0.610	0.770	
2	5	0.990	0.991	0.990	0.631	0.710	0.612	0.738	
2	6	0.988	0.993	0.986	0.602	0.698	0.484	0.645	
3	4	0.997	0.998	0.996	0.726	0.766	0.719	0.755	
3	5	0.991	0.993	0.992	0.734	0.817	0.668	0.751	
3	6	0.989	0.991	0.989	0.465	0.656	0.489	0.681	
4	5	0.991	0.993	0.991	0.765	0.772	0.707	0.751	
4	6	0.989	0.990	0.988	0.361	0.536	0.416	0.649	
5	6	0.993	0.986	0.992	0.443	0.619	0.491	0.640	
Ave	гаде	0.992	0.993	0.991	0.629	0.723	0.608	0.733	

Benchmark Test Evaluation Summary

Device: United Federation of Planets Standard Issue Triquarter

Recording Interval: 11.6 mm

Use Moving Average: No

<u>Up-Sampling:</u> For comparison to the benchmark profile measurement, data were up-sampled to an interval of 5.08 mm.

Profile Accuracy Scores:

-	Waveband						
	IRI	Long	Medium	Short			
Required	0.98	0.98	0.98	0.94			
Achieved							
Dense Graded AC	0.975	0.981	0.960	0.127			
Chip Seal	0.937	0.963	0.926	0.110			
Porous Asphalt	0.973	0.977	0.962	0.094			
Transverse Tining	0.938	0.981	0.904	0.116			
Diamond Grinding	0.938	0.975	0.930	0.160			
Longitudinal Tining	0.979	0.983	0.971	0.144			
Smooth Asphalt	0.953	0.974	0.927	0.079			

Profile Repeatability Scores:

-	Waveband						
	IRI	Long	Medium	Short			
Required	0.98	0.98	0.98	0.94			
Achieved							
Dense Graded AC	0.992	0.993	0.992	0.689			
Chip Seal	0.953	0.965	0.953	0.769			
Porous Asphalt	0.977	0.992	0.975	0.605			
Transverse Tining	0.967	0.968	0.958	0.443			
Diamond Grinding	0.971	0.990	0.963	0.462			
Longitudinal Tining	0.982	0.976	0.981	0.629			
Smooth Asphalt	0.965	0.984	0.939	0.421			

Longitudinal Distance Measurement:

	DMI Error (%)					
Test Section	Average	High	Low			
Required	0.10					
Achieved						
Dense Graded AC	-0.01	-0.01	-0.02			
Chip Seal	0.28	0.35	0.21			
Porous Asphalt	0.12	0.15	0.11			
Transverse Tining	0.03	0.07	0.02			
Diamond Grinding	0.08	0.10	0.08			
Longitudinal Tining	0.02	0.04	0.00			
Smooth Asphalt	0.06	0.10	0.02			

Profile Repeatability Scores:

With no DMI correction:

	Waveband					
	IRI	Long	Medium	Short		
Requirement	0.92	0.92	0.92	0.80		
Dense Graded AC 25 mph	0.987	0.995	0.986	0.583		
Dense Graded AC 50 mph	0.987	0.994	0.986	0.637		
Chip Seal	0.963	0.991	0.956	0.539		
Negative Textured AC	0.976	0.991	0.973	0.583		
Transverse Tining	0.972	0.991	0.962	0.636		
Diamond Grinding	0.980	0.983	0.984	0.590		
Longitudinal Tining	0.974	0.989	0.971	0.471		
Smooth Asphalt	0.986	0.987	0.982	0.483		

With optimal DMI correction:

	Waveband					
	IRI	Long	Medium	Short		
Requirement	0.92	0.92	0.92	0.80		
Dense Graded AC 25 mph	0.987	0.995	0.986	0.636		
Dense Graded AC 50 mph	0.988	0.994	0.988	0.686		
Negative Textured AC	0.963	0.994	0.956	0.587		
Chip Seal	0.977	0.997	0.974	0.629		
Transverse Tining	0.974	0.995	0.964	0.673		
Diamond Grinding	0.981	0.990	0.985	0.633		
Longitudinal Tining	0.974	0.995	0.972	0.506		
Smooth Asphalt	0.987	0.988	0.984	0.560		

Type Testing/Pilot Certification

Describe

- Goals
- Approach

Thank participants Provide a sample report

Pilot Certification

Goals

- Expose the community to procedures that would be applied in regional network profiler certification.
- Apply the dynamic testing portion of AASHTO R-56.
- Give participants an idea of the status of their equipment.

RPUG 2015

Pilot Certification

Approach

- Comparison to a benchmark/reference measurement
- Evaluation of profile:
 - profile trace accuracy
 - profile trace repeatability
 - longitudinal distance measurement accuracy
- Evaluation on diverse surface textures
- 10 passes on each test section

Replacement AC Surfaces

Chip Seal

Novachip

Mn/ROAD

MnDOT SurPro

ICC High-Speed

RPUG 2015

ICC High-Speed Footprint

Ames Engineering 8300

SSI CS 9100

ARRB Hawkeye

Mandli (LCMS, Dynatest)

Fugro ARAN

RPUG 2015

Pathway Pathrunner

RPUG 2015

Inertial Profiler Evaluation Summary

Device: ACME Pavement Network Evaluation Drone

Recording Interval: 11.6 mm

Use Moving Average: Yes

Use Bridging Filter: Not applied

This may be applied in a subsequent pass through the short waveband analysis.

<u>Up-Sampling</u>: For comparison to the benchmark profile measurement, data were up-sampled to an interval of 5.08 mm.

Longitudinal Distance Measurement: Requirement -0.1% < Error < 0.1%

	DMI Error (%)			
Test Section	Average	High	Low	
Dense Graded AC 25 mph	0.02	0.03	0.02	
Dense Graded AC 50 mph	0.02	0.05	0.00	
Chip Seal	0.05	0.10	0.02	
Transverse Tining	0.03	0.10	0.01	
Diamond Grinding	0.02	0.06	-0.04	
Longitudinal Tining	0.04	0.09	0.00	
Smooth Asphalt	0.05	0.10	-0.03	

Profile Accuracy Scores:

With no DMI correction:

	Waveband			
	IRI	Long	Medium	Short
Requirement	0.90	0.90	0.90	0.80
Dense Graded AC 25 mph	0.920	0.990	0.912	0.152
Dense Graded AC 50 mph	0.985	0.987	0.986	0.205
Chip Seal	0.916	0.971	0.924	0.207
Negative Textured AC	0.884	0.961	0.895	0.408
Transverse Tining	0.956	0.989	0.935	0.216
Diamond Grinding	0.953	0.985	0.942	0.390
Longitudinal Tining	0.967	0.979	0.964	0.198
Smooth Asphalt	0.968	0.987	0.947	0.141

With optimal DMI correction:

	Waveband			
	IRI	Long	Medium	Short
Requirement	0.90	0.90	0.90	0.80
Dense Graded AC 25 mph	0.926	0.990	0.916	0.210
Dense Graded AC 50 mph	0.988	0.987	0.989	0.233
Chip Seal	0.929	0.975	0.943	0.235
Negative Textured AC	0.922	0.985	0.935	0.446
Transverse Tining	0.959	0.991	0.940	0.259
Diamond Grinding	0.956	0.992	0.946	0.500
Longitudinal Tining	0.970	0.988	0.967	0.275
Smooth Asphalt	0.970	0.988	0.951	0.152

Profile Repeatability Scores:

With no DMI correction:

	Waveband			
	IRI	Long	Medium	Short
Requirement	0.92	0.92	0.92	0.80
Dense Graded AC 25 mph	0.987	0.995	0.986	0.583
Dense Graded AC 50 mph	0.987	0.994	0.986	0.637
Chip Seal	0.963	0.991	0.956	0.539
Negative Textured AC	0.976	0.991	0.973	0.583
Transverse Tining	0.972	0.991	0.962	0.636
Diamond Grinding	0.980	0.983	0.984	0.590
Longitudinal Tining	0.974	0.989	0.971	0.471
Smooth Asphalt	0.986	0.987	0.982	0.483

With optimal DMI correction:

	Waveband			
	IRI	Long	Medium	Short
Requirement	0.92	0.92	0.92	0.80
Dense Graded AC 25 mph	0.987	0.995	0.986	0.636
Dense Graded AC 50 mph	0.988	0.994	0.988	0.686
Negative Textured AC	0.963	0.994	0.956	0.587
Chip Seal	0.977	0.997	0.974	0.629
Transverse Tining	0.974	0.995	0.964	0.673
Diamond Grinding	0.981	0.990	0.985	0.633
Longitudinal Tining	0.974	0.995	0.972	0.506
Smooth Asphalt	0.987	0.988	0.984	0.560

Reference Testing/Pilot Certification

Issues

- Changes in jointed PCC profile
- Left wheel track
- Filtering
- Very smooth pavement
- Short waveband
- Data volume

Thank you.